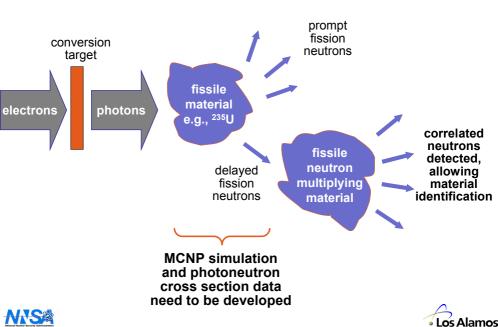
Photofission Delayed Neutron Re-interrogation for Detecting SNM: Establish Simulation Capability


R.C. Little, M. White, S. Frankle (X-5) M.B. Chadwick, P. Moller, W.B. Wilson (T-16) L.E. Ussery, C.A. Goulding, W.L. Myers, K.B. Butterfield, C.I. Hollas, C.E. Moss (NIS-6)

Proposal to develop MCNP, together with photonuclear and delayed neutron cross section databases, for interpreting experiments and developing interrogation technology, for users in Emergency Response & Homeland Security

Delayed Neutron Re-interrogation

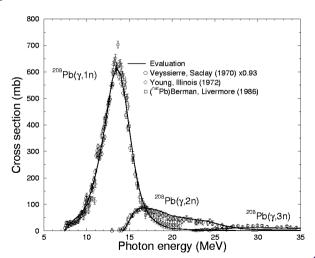
Scheme for detecting SNM (including ²³⁵U)

- Photons produced by accelerated electrons incident on a bremsstrahlung conversion target (eg NIS's betatron), will introduce photonuclear reactions in fissile materials
- Photofission produces both prompt neutrons and delayed neutrons (following beta-decay of fission products)
- Presence of delayed neutrons is indicative of special nuclear materials (SNM)
- Subsequent multiplication of the neutrons by SNM, and detection of these multiplied neutrons, can be used to determine whether ²³⁵U, ²³⁹Pu, ²³⁷Np, etc.
 - NIS is undertaking experiments to develop this technology
 - A modeling/simulation capability is needed

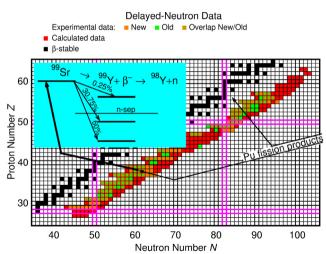
Photonuclear modeling and cross sections: Existing capabilities & Future needs

Existing photonuclear cross sections & databases:

- GNASH nuclear reaction code in T-16 has been extended to model photonuclear cross sections (x/s), and predict x/s & spectra of emitted neutrons (and other ejectiles)
- Limited (12) set of LANL cross section ENDF evaluations developed for accelerator & target materials (DARHT project)
- Large (>150) set of evaluations produced under an IAEA collaboration (led by Los Alamos)


Future needs:

- No Los Alamos ENDF databases exist yet for actinide photonuclear cross sections – these need to be developed
- No ENDF photonuclear databases contain delayed-neutron data – need to be developed

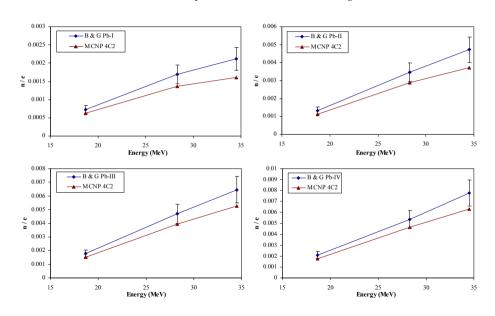

Example of existing LANL photoneutron cross section databases: GNASH modeling

LANL Moller-Nix model for predicting delayedneutron properties

Photonuclear Transport in MCNP: Existing Capabilities & Future needs

Existing MCNP photonuclear transport capability

- MCNP has recently been extended to handle fully-coupled photoneutron transport
- MCNP uses T-16's ENDF photonuclear databases
- The capability was successfully validated against thicktarget neutron production measurements from electronphoton sources


Future needs:

 MCNP does not yet have an ability to simulate delayedneutron photonuclear data. Library formats and code functionality need to be developed

Neutron Yield per Electron Incident on a Lead Target

Proposal

Fast-response (1-year) for approximate modeling capability

- Evaluate delayed neutron production (number, energy, timedependence), by approximating photon-induced data by known neutron-induced data
- Integrate these data into existing actinide ENDF databases (from Russia), and process with NJOY for applications
- Develop MCNP ability to use delayed-neutron data
- Work with NIS on use of these data to analyze measurements

Accurate comprehensive capability (3 years):

- Develop high-quality LANL actinide photonuclear ENDF databases (^{235,8}U, ²³⁹Pu, ²³⁷Np)
- Evaluate delayed-neutron photonuclear data, using existing measurements and model calculations (that model fission yields, beta decay, and delayed neutron fractions (Pn))
- Provide correlated-event MCNP simulation ability to assist NIS identification of material-type

